Glomerular Disease

Focal Segmental Glomerulosclerosis
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Abstract

Focal segmental glomerulosclerosis (FSGS) is a leading cause of kidney disease worldwide. The presumed etiology of
primary FSGS is a plasma factor with responsiveness to immunosuppressive therapy and a risk of recurrence after kidney
transplant-important disease characteristics. In contrast, adaptive FSGS is associated with excessive nephron workload
due to increased body size, reduced nephron capacity, or single glomerular hyperfiltration associated with certain
diseases. Additional etiologies are now recognized as drivers of FSGS: high-penetrance genetic FSGS due to mutationsin one
of nearly 40 genes, virus-associated FSGS, and medication-associated FSGS. Emerging data support the identification
of a sixth category: APOLT1 risk allele-associated FSGS in individuals with sub-Saharan ancestry. The classification of a
particular patient with FSGS relies on integration of findings from clinical history, laboratory testing, kidney biopsy,
and in some patients, genetic testing. The kidney biopsy can be helpful, with clues provided by features on light microscopy
(e.g., glomerular size, histologic variant of FSGS, microcystic tubular changes, and tubular hypertrophy), immunoflu-
orescence (e.g., to rule out other primary glomerulopathies), and electron microscopy (e.g., extent of podocyte foot process
effacement, podocyte microvillous transformation, and tubuloreticular inclusions). A complete assessment of renal
histology is important for establishing the parenchymal setting of segmental glomerulosclerosis, distinguishing FSGS
associated with one of many other glomerular diseases from the clinical-pathologic syndrome of FSGS. Genetic testing
is beneficial in particular clinical settings. Identifying the etiology of FSGS guides selection of therapy and provides
prognostic insight. Much progress has been made in our understanding of FSGS, but important outstanding issues remain,
including the identity of the plasma factor believed to be responsible for primary FSGS, the value of routine implementation
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of genetic testing, and the identification of more effective and less toxic therapeutic interventions for FSGS.
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Introduction

Focal segmental glomerulosclerosis (FSGS) is the
leading glomerular cause of ESRD in the United
States. FSGS refers to a histologic pattern that is a
characteristic of perhaps six distinct underlying etiol-
ogies sharing a common theme of podocyte injury and
depletion. The diagnosis and evaluation of FSGS rely
on integration of the clinical history (family history,
birth history, peak weight and body mass, and
medication use), clinical laboratory findings (serum
albumin, urine protein, and viral serologies), and renal
histopathology. Proteinuria may be in the nephrotic or
subnephrotic range. Critical is the elimination of other
systemic diseases or primary renal diseases that may
result in a similar presentation. Many reviews cover
various aspects of FSGS and include comprehensive
reviews (1-4), disease mechanisms (5-8), pediatric dis-
ease (9), immunologic aspects (10), treatment in children
(11), and treatment in adults (12-14). We focus here on a
practical approach to FSGS assessment on clinical and
histopathologic grounds in the context of our current
understanding of disease mechanisms and genetics.

Epidemiology and Global Burden

The prevalence of FSGS, relative to other glomer-
ular disease diagnoses, seems to be increasing world-
wide, and it is a major contributor to ESRD. However,
the absolute incidence and prevalence of FSGS are
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difficult to ascertain given the large global variations
in the indications, accessibility, and pathology sup-
port for kidney biopsy. McGrogan et al. (15) reviewed
published literature from around the world and
reported that annual incidence rates ranged from 0.2
to 1.8/100,000 population per year. Australia, with a
liberal biopsy policy, had among the highest inci-
dence of FSGS (15,16). A population-based study in the
southwestern United States examined 2501 adult kidney
biopsies performed between the years 2000 and 2011
(17). Over the 12 years studied, FSGS was the most
common diagnosis (39% of biopsies), with an increasing
incidence rate (from 1.6 to 5.3 patients per million).
Although the average incidence rate was 2.7 patients per
million, there was a significant racial/ethnic predilec-
tion. FSGS incidence rates are generally higher in men,
being approximately 1.5-fold higher than in women.
In 2004, Kitiyakara et al. (18) noted a two-decade-long
trend of increasing ESRD attributed to FSGS in the
United States. Incident rates, expressed as patients
per million, were 6.8 in blacks, 3.7 in Hispanics, and
1.9 in whites. The rise in FSGS prevalence has been
observed in other populations as well. In Nigeria, the
leading cause of nephrotic syndrome has shifted from
quartan malaria (ca. 1960s) to membranoproliferative
GN (ca. 1980s) to FSGS (present) (19). The factors re-
sponsible for the increasing incidence and preva-
lence of FSGS are largely unknown. Some of the
increase is likely attributable to improved recognition
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(particularly where indications for kidney biopsy are
broadening and the procedure is more available). There
may well be an absolute rise in incidence of adaptive FSGS
compounded by obesity and chronic inflammation, but
epidemiologic data are lacking.

Among the primary nephrotic diseases, FSGS is most
likely to progress to ESRD. Within FSGS categories, emerg-
ing data indicate that an association with APOL1 defines a
group most likely to progress to ESRD. Histologic variants
portend outcome with variable rates of progression (col-
lapsing variant greater than not otherwise specified [NOS]
greater than tip lesion).

Classification

Classification of FSGS is multifaceted and includes
pathophysiologic, histologic, and genetic considerations.
D’Agati et al. (20) initially proposed that FSGS be divided
into primary (idiopathic) and secondary forms. The latter
might be considered to include familial/genetic forms,
virus-associated forms, drug-induced forms, and forms
mediated by adaptive structural-functional responses
(i.e., in the setting of congenital or acquired reduction of
renal mass/nephron complement). Clinical response and
prognosis may relate to the histologic variant, most
notably the glucocorticioid responsiveness of the tip
lesion and the aggressive, unrelenting nature of the
collapsing variants (21,22). It is with this in mind that the
variants are included in standard pathology reports. More
recently, efforts to identify genetic drivers of FSGS in at-risk
populations have gained momentum, with the most recent
addition including the APOLI genetic variant as a major
association with FSGS in individuals of sub-Saharan African
descent with FSGS (23).

Putting together the genetic susceptibility, pathophys-
iologic drivers, clinical history, and response to therapy
(summarized in Table 1), we believe that it is useful to cluster
FSGS into six clinical forms (Figure 1, Table 2). These
include two common forms (primary FSGS and adaptive
FSGS) and three less common forms (high-penetrance
genetic FSGS, viral-mediated FSGS, and medication-
associated FSGS) (24). Evidence is mounting to consider
another form—APOL1l-associated FSGS (discussed below).
With regard to primary FSGS, some would prefer the term
idiopathic FSGS; both are defined as a disease that arises
spontaneously or is of unknown cause, and we would view
these terms as interchangeable.

Histopathology

Historically, degenerative glomerular lesions of FSGS were
those seen in the progression of minimal change disease (MCD;
formerly lipoid nephrosis), and it was subsequently noted that
these patients had an accelerated clinical course (25,26). In
contrast to MCD, FSGS glomeruli show segmental solidifica-
tion of the glomerular tuft. Tubulointerstitial scarring indica-
tive of glomerular disease may also be observed. It is not
uncommon that a biopsy with minimal glomerular changes
may have tubulointerstitial damage, suggesting that FSGS
might have been present on unsampled glomeruli.

The distinction between MCD and FSGS is critical,
because both present with proteinuria, podocyte injury,
and minimal immune deposits. For the biopsy to exclude
FSGS as a cause of nephrotic syndrome and assess the
degree of cortical involvement, adequate renal cortical sam-
pling is required. The involvement of glomeruli in focal
glomerular processes follows a binomial distribution, and
thus, for focal disease, more glomeruli are necessary to

Table 1.

Relevant Clinical History

Data relevant in evaluating a patient with the histologic diagnosis of FSGS

Laboratory Data

Renal Biopsy Findings

Family history of kidney disease

Birth weight, gestational age at
birth, congenital cyanotic heart
disease

Sickle cell disease

restriction
History consistent with reflux
nephropathy or reduced renal
mass

Peak and present body mass index:
obesity, extreme muscular
development

Viralinfection: HIV, cytomegalovirus

Medication, past or present: IFN,
lithium, bisphosphonate,
androgen abuse, chronic use of
nephrotoxic drugs

Serum albumin before therapy
Urine protein-to-creatinine ratio

Change in urine protein-to-
creatinine ratio after maximal
renin-angiotensin-aldosterone
therapy and dietary sodium

Change in urine protein-to-
creatinine ratio after
immunosuppressive therapy

FSGS histologic variant
Glomerular size (glomerulomegaly)

Electron microscopy: extent of foot
process effacement; podocyte
mircrovillus transformation

Electron microscopy:
tubuloreticular inclusions in
glomerular endothelial cells (IFN
effect)

Modified from Kopp (24), with permission.
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Minimal Change Disease
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FSGS - Tip lesion variant

Figure 1. | Histopathology of minimal change disease and focal segmental glomerulosclerosis. Minimal change disease shows patent glomeruli
inthe absence of tubulointersitial scarring (silver stain, X40). Thetip lesion represents a focal adhesion of the glomerular tuftto Bowman’s capsule near
the proximal tubule takeoff (silver stain, X400). The most common forms of FSGS seen in adaptive FSGS and across all etiologies of FSGS are the
perihilar variant (periodic acid-Schiff stain, X40) and not otherwise specified pattern (silver stain, X400). The most distinctive variant is the collapsing
variant (collapsing glomerulopathy; silver stain, X40). A specific instance of collapsing variant can be appreciated in the setting of endothelial
tubuloreticular inclusions seen on ultrastructural analysis. These may be observed in high IFN states, including viral infection and exogenous IFN. The
red arrowhead indicates the relative response to therapy and propensity of progression of these various forms, with minimal change disease and tip
lesion being most responsive and least progressive and collapsing glomerulopathy being most therapy resistant and rapidly progressing.

observe an affected glomerulus (27,28). There is also zonal
proclivity for FSGS, such that juxtamedullary/inner cortex
glomeruli are the first affected progressing to involve the
outer cortex at a later stage of disease (24). Fogo et al. (29)
further show that the focality of sclerotic lesions is greater in
children than in adults, suggesting a need for more com-
prehensive sampling. Differential staining patterns for syn-
aptopodin (30) and dystroglycan (31) may distinguish
steroid-sensitive MCD versus steroid-resistant MCD (likely
unsampled FSGS) and FSGS.

A simulation study has highlighted two issues with
respect to diagnostic yield of renal biopsies in FSGS (28). (1)
If glomerular scars are uniformly distributed in a biopsy
with 10-30 glomeruli, the diagnostic accuracy for the
detection of at least one scarred glomerulus will be 80%
when at least 10% of juxtamedullary glomeruli or 20% of
other cortical glomeruli are scarred. (2) With an average of
20 glomeruli with 20%—-60% glomerular sclerosis, the
predicted error rate is *50% for extent of glomerular

involvement. This suggests caution when making treatment
recommendations on the basis of the extent of involved
glomeruli (Supplemental Figure 1).

The Columbia classification of FSGS recognized five
morphologic patterns, all of which involve obliteration of
the capillary lumens and for the most part, have good
reproducibility across independent observers (20,32) (Fig-
ure 2). Two distinctive forms are the tip lesion and the
collapsing variant. Tip lesions affect the portion of the
glomerular tuft juxtaposed to the tubular pole. Abnormal-
ities include adhesion to Bowman’s capsule at the tip,
hypercellularity, presence of foam cells, and/or sclerosis.
By contrast, the collapsing variant shows segmental or
global mesangial consolidation and loss of endocapillary
patency in association with extracapillary epithelial hyper-
trophy and/or proliferation. Microcystic tubular dilation is
frequently present. The perihilar and NOS variants are
determined by whether the segmental sclerosis/segmental
obliteration of capillary loops with matrix increase (with or
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Primary FSGS

Genetic FSGS

APOL1 FSGS

Virus associated FSGS

Medication/toxin associated FSGS

Adaptive FSGS

Figure 2. | The six forms of FSGS. These syndromes include three forms that are most common, including primary FSGS, adaptive FSGS, and
APOLT FSGS. These forms are probably of approximately equal prevalence in the United States adult population. Three forms are less common,
including genetic FSGS (by which is meant high-penetrance genetic causes), medication-associated FSGS, and viral FSGS. The approximate
relative distribution of these variants in the United States population at present is shown by the size each cloud, although firm data on
prevalence are lacking. The absolute frequency of these FSGS forms is influenced by race/ethnicity (particularly in the frequency of APOL1 risk
variants), age (children are less likely to have adaptive FSGS), and the frequency of exposures totoxins (e.g., heroin) and medications and having

viruses (e.g., HIV).

without hyalinosis) involves the segment near the hilum or
the specific segment cannot be determined, respectively.
The cellular lesion is perhaps the most difficult lesion to
identify reproducibly and shows segmental endocapillary
hypercellularity occluding lumens with or without foam
cells and karyorrhexis (32). Some biopsies will show
multiple morphologic lesions (33,34), and the Columbia
classification suggests a hierarchy for diagnosis, such that the
presence of the higher-ranking lesion determines the clinical
course: collapsing variant, tip lesion, cellular variant, peri-
hilar variant, and lastly, NOS (reviewed in Stokes and
D’Agati [35]). Including the pattern of FSGS has standardized
the reporting of FSGS lesions and provides prognostic
information. Nonetheless, this classification system was
designed to rely solely on pathologic criteria and does not
integrate these findings with clinical and genetic information.

Complete renal pathologic evaluation includes immu-
nofluorescence analysis and electron microscopy, which
help to exclude focal and segmental glomerular scarring as
an injury pattern that can be seen as an element of any
chronic progressive renal diseases, including lupus nephri-
tis, IgA nephropathy, and diabetic nephropathy (36). As
such, to avoid confusion, it is probably best to avoid using
the term FSGS in this setting. Low or moderate amounts of
IgM are frequently present in the mesangium of patients
with FSGS. Thurman and colleagues (37) have proposed

that IgM may bind neoepitopes in the mesangium that are
exposed after nonimmune injury, resulting in complement
deposition and glomerular injury.

Ultrastructural examination adds to the assessment in
three ways. First, it can exclude the presence of immune
complexes and abnormal deposits, such as amyloid. Sec-
ond, it can exclude basement membrane abnormalities seen
in genetic disorders of collagen; the appearance of COL4
mutations among the list of genes associated with FSGS
suggests that the alterations in basement membrane at the
ultrastructural level may be subtle or undetectable. Third,
it can provide an estimate of the severity of podocyte
injury (fractional foot process effacement) and injury
pattern (microvillus transformation). Mean foot process
width is greater in primary FSGS compared with adap-
tive FSGS and may serve as a helpful, although subtle,
clue (38).

The use of all three renal pathology modalities (light
microscopy, electron microscopy, and staining for Ig and
complement) is critical in making the distinction between
MCD and FSGS. Extensive podocyte injury at the ultra-
structural level with adequate numbers of normal-appearing
glomeruli and nonscarred tubulointerstitium by light
microscopy suggests MCD. Nevertheless, individuals
with a diagnosis of MCD who are resistant to glucocor-
ticoid therapy or manifest deterioration in renal function
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may have FSGS that was not sampled on the first biopsy
and is shown on a subsequent renal biopsy.

Mechanisms of Disease

FSGS is a diverse syndrome that arises after podocyte injury
from diverse causes: some known and others unknown (39).
The sources of podocyte injury are varied (circulating factors
[primary FSGS], genetic abnormalities, viral infection, and
medication), although the effect on podocytes is similar. For
the most part, the interplay among these drivers is unclear and
likely complex. For instance, adaptive FSGS involves both
podocyte stress (a mismatch between glomerular load and
glomerular capacity) and a genetic susceptibility. Wiggins and
colleagues (40) have elegantly shown this in a rat model that
combines genetic susceptibility, renal mass reduction (unin-
ephrectomy), and obesity (increased glomerular load).

Importantly, podocyte injury from any of the forms of
FSGS (or from other glomerular diseases) will initiate a
similar process, resulting in the pathologic features of
adaptive FSGS.

It is thought that there is progressive loss of injured
podocytes into the urinary space. Podocyte depletion arising
from an inability to replicate (although nuclear division may
occur, at least in animals) and results in podocyte catastro-
phe (41). To balance this deficit, podocytes compensate by
hypertrophy to cover more of the glomerular capillary
surface. In a recent insightful and provocative review, Kriz
and Lemley (42) proposed that shear stress forces on
podocytes are a critical factor driving podocyte injury. In
adaptive FSGS, glomerular hypertrophy occurs early in the
disease process; in other forms of FSGS and other glomer-
ular diseases, glomerular hypertrophy occurs with pro-
gressive nephron loss, leading to increased pressures and
flows in the remaining patent glomeruli.

The following sections address pathologic mechanisms,
therapy, and treatment for each of the FSGS syndromes.
The typical onset ages and approximate relative incidence
rates are shown schematically in Supplemental Figure 1.

Primary FSGS

Primary FSGS is a distinct entity, and paradoxically, it is best
defined, at this time, as what it is not (i.e., not one of the other
forms of FSGS). As a practical matter, this means assessing the
likelihood of other forms. This includes ruling out adaptive
FSGS (by medical history, peak or current body weight, renal
biopsy features, serum albumin, or proteinuria response to
renin-angiotensin-aldosterone system [RAAS] antagonism),
genetic FSGS (via genetic test panels on the basis of family
history and age of onset), viral FSGS (by appropriate virologic
testing), and medication-associated FSGS (by medication
history). Emerging data support that APOL1l-associated
FSGS may make up yet another form of primary FSGS.

The mechanism of podocyte injury in at least some pa-
tients with primary FSGS likely involves a circulating factor,
possibly a cytokine that makes particular subjects susceptible.
The best evidence for a circulating factor comes from the
experience with recurrent FSGS immediately (on a scale of
hours to several weeks) after kidney transplant. The cyto-
kine or cytokines responsible for recurrent FSGS after
kidney transplant remain to be defined. In an unusual and

striking case that supports the cytokine hypothesis, a kid-
ney was transplanted into a recipient with FSGS; proteinuria
developed, and the transplanted kidney showed podocyte
foot process effacement. Subsequently, the kidney was re-
moved and transplanted into a patient with ESRD due to
diabetes, and in the new host, the kidney functioned well
without proteinuria (43). Current candidates for the recurrent
FSGS factor, reviewed recently (44), include cardiotrophin-
like cytokine factor 1 (45), apoAlb (an isoform of ApoAl)
(46), anti-CD40 antibody (47), and serum urine-type plas-
minogen activator receptor (SuPAR) (48). The role of suPAR
remains controversial (49). suPAR levels were reported in
FSGS and other primary glomerular diseases (50). In primary
and adaptive FSGS (51), elevated levels may (52) or may not
(53) predict glucocorticoid sensitivity, and a role for different
forms of suPAR has been suggested as reviewed recently
(54). Recurrent FSGS plasma affects the cytoskeleton of
cultured podocytes, including promoting cell mobility by
phosphorylating vasodilator-stimulated phosphoprotein (55)
and disassembling focal adhesion complexes (56). The lack of
suitable animal models has hindered progress in this area.

It is quite likely that other patients with what is now
diagnosed as primary FSGS will be reassigned to alterna-
tive etiologies, including new genes, environmental factors,
and/or microorganisms.

Primary FSGS has several prototypical characteristics. It
is probably the most common form in adolescents and
young adults, although it may occur at any age. It is com-
monly associated with nephrotic-range proteinuria (some-
times massive), reduced plasma albumin levels, and
hyperlipidemia. Histologically, it may manifest as the tip
variant, collapsing variant, or NOS variant.

Current therapy for primary FSGS is on the basis of im-
munosuppressive agents; it is now apparent that a number of
these, including glucocorticoids and calcineurin inhibitors,
directly modulate the podocyte phenotype (57). Recently, it
has been shown that the effects of glucocorticoids may be
mediated by Kriippel factor 15, a zinc finger transcription factor
(57,58). In a recent retrospective case series involving 476
subjects, the use of glucocorticoids and/or cyclosporin was
associated with improved outcomes compared to no immu-
nosuppression, with a hazard ratio of 0.49 (95% CI, 0.28 to 0.86)
for ESRD whereas the use of cyclosporine with or without
glucocorticoids was not associated with benefit HR 0.42 (95%
CI, 0.15 to 1.18) (59). Despite the limitations of a retrospective
study design, this provides new evidence to support therapy.

Recurrent FSGS remains a vexing clinical problem. The
histologic variant in the native kidney does not predict re-
currence, although it is notable that only one of 77 initial kidney
biopsies from subjects who subsequently had recurrent FSGS
showed the perihilar variant (60). Therapy with plasma ex-
change may induce a remission, typically temporary. Canaud
et al. (61) reported favorable results from a small series of adult
subjects (1=10) with a regimen that included glucocorticoids
and cyclosporin initially administered intravenously.

Adaptive FSGS

Adaptive FSGS, which has also been called, perhaps
more accurately, postadaptive FSGS (62), arises after a
period of nephron-level glomerular hyperfiltration and
glomerular hypertension after pathophysiology as identified
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by Brenner and Mackenzie (63). Total GFR may be elevated,
normal, or decreased at the outset.

Conditions that are associated with an increase in total
kidney GFR include congenital cyanotic heart disease (64),
sickle cell anemia (65), obesity (66), androgen abuse (67),
sleep apnea (68), and high-protein diet. The duration of
single-nephron glomerular hyperfiltration is typically mea-
sured in decades before progressive glomerulosclerosis
eventually reduces total GFR. Conditions associated with
reduced renal mass include prematurity and/or small for
gestation age (69), renal anomalies, reflux nephropathy,
and AKI. Any chronic glomerular or tubular disease may
reduce the total nephron function and result in adaptive
FSGS that is superimposed on the primary disorder.

Adaptive FSGS arises from the processes described
above involving increased single-nephron GFR (often
with intraglomerular hypertension), leading to progressive
cycles of glomerular hypertrophy; podocyte hypertrophy,
stress, and depletion; and synechia formation and excess
extracellular matrix deposition within the glomerulus as
described so well by Kriz and Lemley (70).

Renal biopsy features that support the diagnosis of adaptive
FSGS include large glomeruli, a preponderance of perihilar
scars among glomeruli showing sclerotic changes, and only
partial foot process effacement. Clinical features include a
normal serum albumin, which is unusual in primary FSGS. A
complete response to RAAS antagonism, particularly when
combined with sodium restriction and a rise or normalization
of serum albumin, supports the diagnosis of adaptive FSGS,
although it does not exclude other forms of FSGS.

Genetic FSGS

Genetic FSGS takes two forms. First, some patients are
associated with variants in susceptibility genes (i.e., some
individuals with a particular variant will develop FSGS, and
other individuals will not). By far, the most common exam-
ple of this is the newly identified association with APOL1 as
discussed below. Other genetic risk loci include PDSS1 (71)
and numerous others (72,73). More are likely to be discovered
in the near future. Second, other patients are associated with
high-penetrance mutations that manifest either Mendelian
inheritance (for nuclear genes) or maternal inheritance (for
genes encoded by mitochondrial DNA). The number of genes
associated with FSGS rises every year, in large part because
of the dissemination of whole-exome sequencing. To date,
at least 38 genes have been identified as shown in Table 3 .
(For simplicity, genes such as CFH and C3, which represent
distinct syndromes that could be mistaken for FSGS when
ultrastructure examination is not performed, have not been
listed in Table 3. Other genes that have provisionally been
associated with FSGS but lack the robust data needed to
firmly establish causality are not shown [e.g., ACLS4, ALGI,
NEIL1, PMM2, PODLX, SYNPO, and ZEBI]).

Some genes are associated with a syndrome that includes
extrarenal manifestations, and this can provide a clinical
clue that a patient might have a mutation in a particular
gene. Some genes are associated with characteristic changes
in basement membrane morphology (e.g., LXMB1 and
COL4A3-5) or mitochondrial morphology (e.g., the genes
associated with mitochondrial encephalopathy, lactic acido-
sis, stroke-like episode syndrome) that may provide such
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clues. Other genes are associated with therapeutic response.
(Table 5 does not include genes associated with steroid-
sensitive nephrotic syndrome, for which renal biopsies have
not been done. Some genetic variants shown in Table 5 are
associated with glucocorticoid sensitivity; e.g., PTPRO [74]).

Should patients with FSGS undergo genetic testing? The
answer to this question remains unclear. With regard to
pediatric patients, Hildebrandt and coworkers (75) have
suggested that every family with a child who has FSGS
deserves to be offered an opportunity to have a genetic
diagnosis (RE). Benefits of this approach may include a
guide to appropriate therapy (e.g., avoidance of glucocor-
ticoids except for in genetic forms that may be responsive
and coenzyme QI0 therapy for particular mitochondrial
mutations), prognosis (typical native kidney outcomes and
likelihood of transplant recurrence), and family issues (iden-
tification of disease in other family members and prenatal
testing). To be sure, caution is warranted, in that systematic
studies of the response of genetic forms of FSGS to various
therapies have not been carried out. High-penetrance genetic
causes are more likely to be identified in childhood nephrotic
syndrome (approximately 60%) than in that in older children
and adolescents (approximately 5%), with lower rates in
adults (75,76). Genetic testing in adults with FSGS is in-
dicated where there is a family history, because some genes
have mutations associated with autosomal dominant muta-
tions (IFN2 and ATCN4).

What is the most appropriate and cost-effective way to
carry out genetic testing? When a family has not had gene
testing previously that identified a specific gene, the most
effective approach is to use panels that focus on early-onset
FSGS (infant and early childhood) or adult-onset FSGS.
Genetic test resources around the world are available at the
Genetic Test Registry, National Center for Biotechnology
Information, National Institutes of Health (http://www.ncbi.
nlm.nih.gov/gtr).

A more comprehensive approach is a whole-exome scan,
which provides DNA sequence for the approximately 180,000
exons that make up the approximately 22,000 human genes;
this may, in the near future, replace the use of selected gene
panels. Genetic testing may identify known mutations that
prior experience has shown are associated with FSGS, but it
may also identify protein-altering mutations (e.g., missense
mutations that change an amino acid or introduce a stop
codon) of unknown significance. With comprehensive ge-
netic exploration, there is also the possibility of unexpected
identification of genetic variants that have significance for
the individual and family. An advisory group from the
American College of Human Genetics has provided a
recommended list of 56 genes for which variants that are
likely to be disease associated should be reported to the
individual or family; this list will likely expand over time
(77). Therapy for genetic FSGS is generally conservative and
on the basis of RAAS antagonism. Calcineurin inhibitors
may have an effect in a minority of patients (78). As noted
above, coenzyme Q10 may benefit individuals with muta-
tions in certain mitochondrial defects.

Virus-Associated FSGS
Among infections, viruses are predominantly implicated
in causing FSGS. HIV-1 is strongly associated with FSGS,
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particularly the collapsing glomerulopathy variant, al-
though other variants are also seen (79). The mechanisms
likely involve direct infection of podocytes (80). A similar
renal syndrome can be reproduced in transgenic mice
bearing HIV-1 Nef (81) or Vpr (82) accessory proteins,
suggesting possible mechanisms.

Interestingly, the effect of HIV on podocytes is strongest
in individuals with two APOLI risk alleles, with an odds
ratio of 29 in the United States (83) and an odds ratio of 89
in South Africa (84). Most individuals with HIV-associated
nephropathy (HIVAN) have one or two APOLI risk alleles.

Other viruses that have been implicated in causing FSGS
include cytomegalovirus, parvovirus B19, and Epstein-Barr
virus, with the evidence perhaps stronger for cytomegalovirus
compared with the others (reviewed in Chandra and Kopp [85]).

Certain parasites have also been associated with FSGS,
presumably by stimulating innate immune pathways in
ways that injure podocytes. These include Plasmodium
(malaria) (86), Schistosoma mansoni (87), and filiariasis (88),
although these seem to be rare events given the frequency
of these infections.

Medication-Associated FSGS

There is a relatively short list of medications that cause
FSGS. IFN-«, -B, or -y therapy has been associated with the
development of collapsing glomerulopathy in a case series
of 11 subjects (89).

Several other medications have been associated with
FSGS; a genetic predisposition is plausible but has not been
shown. Bisphosphonates are associated with podocyte
injury, including MCD, FSGS, and particularly, collapsing
FSGS (collapsing glomerulopathy) as first reported by
Markowitz et al. (89). As in HIVAN, the abundant cells in
Bowman’s space are derived from the parietal epithelium
(90). The mechanism by which bisphosphonates act re-
mains obscure. Lithium therapy has been associated with
MCD, which typically reverses within weeks after stopping
the medication, and FSGS, which may also be revers-
ible (91). The mechanism of podocyte injury, if that is the
mechanism, remains to be determined. Sirolimus, partic-
ularly when the plasma levels are high, has been associated
with FSGS (92) as well as exacerbating preexisting FSGS
(93). Anthracycline medications, including doxorubicin
(Adriamcyin) and daunomycin, have been associated
with FSGS (94), and doxorubicin, a podocyte toxin, has
been widely used to generate a mouse model of FSGS (95).

Emerging Pathologic Mechanisms: APOL1-Associated
FSGS

The identification of genetic variants in APOL1 in pa-
tients with FSGS has been an important discovery for FSGS
and related diseases. Unlike certain genes that have not
shown firm causality to FSGS, data are mounting for the
role of APOL1. Although confirmatory data are required,
the strength and consistency of the genetic association, the
exclusion of other genetic variants in this genomic region,
and the demonstration that the expression of the renal risk
variants (but not the common allele) causes FSGS in
transgenic mice (96) are highly supportive of the role of
APOLI genetic variants as causal for FSGS.
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APOL1-associated FSGS is a major form of FSGS in
countries with individuals of sub-Saharan African descent.
The effect is largely recessive, requiring two risk alleles,
although in certain situations (e.g., HIV-positive South
Africans), a single copy of a risk allele G1 has a significant
association with HIVAN (84). In the United States, ap-
proximately 40% of ESRD attributed to FSGS occurs in
blacks, and of this, 72% is associated with APOLI genetic
variants (83); thus, approximately one third of FSGS in the
United States is associated with APOL1 variants.

APOL1-associated FSGS can present in various ways: it
may present as a primary FSGS, with severe nephrotic
syndrome, or as recurrence after kidney transplant, or it
manifest as adaptive FSGS with preserved serum albumin
and minimal edema. One setting in which the adaptive
processes drive APOL1 FSGS is perhaps the report that
APOL1 variants are associated with proteinuric sickle cell
nephropathy (97), although a systematic study of kidney
histology in APOL1-associated sickle nephropathy is still
lacking. APOL1 high-risk alleles are strongly associated with
collapsing glomerulopathy in several settings: (1) HIVAN, in
which 72% have two APOL1 high-risk alleles (83), and (2) the
use of exogenous IFN (98) and in lupus (99).

Emerging data support defining APOL1 FSGS as a sep-
arate category of FSGS. First, the APOL1 risk alleles repre-
sented confer susceptibility, but most subjects with two risk
alleles will not develop kidney disease; thus, APOL1 differs
from the high-penetrance genetic variants in most other
forms of genetic FSGS. Second, APOL1 FSGS is by far the
most common form of genetic FSGS in countries with
substantial African descent populations. Third, the diagnosis
of APOL1 FSGS may have implications for prognosis, with
more rapid progression to ESRD, and it may have impli-
cations for the selection of living donors. Fourth, novel
therapeutics may become available that target APOL1
variant-driven molecular pathways.

Therapeutic Approaches

Therapy should be individualized on the basis of the
particular form of FSGS as well as factors particular to the
patient, such as age and comorbidities. Therapy for pri-
mary FSGS and in rare instances, genetic FSGS, particularly
when nephrotic proteinuria is present, involves the use of
medications that are immunosuppressive but also have
direct effects on podocytes. These therapies are summa-
rized in Tables 4 and 5 and discussed below. A compre-
hensive analysis of approaches to steroid-sensitive and -resistant
FSGS is available from the Kidney Diseases Improv-
ing Global Outcomes initiative, and the reader is referred
to this initiative for a detailed and thoughtful discussion
(100) as well as recent reviews (13). FSGS may be re-
sponsive to therapy with glucocorticoids, although re-
lapses are typical. Randomized, controlled trials are few.
Interestingly, functional polymorphisms in the glucocorticoid
receptor encoded by NR3C1 have been associated with both
relapse and frequent relapse (101). Cyclosporin plus low-
dose prednisone was shown in a randomized, controlled trial
to be superior to prednisone alone in preserving renal
function assessed as creatinine clearance (102). Mycopheno-
late mofetil has not been tested as monotherapy for FSGS, but
it has been tested in combination with glucocorticoids in
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Table 4. Treatment recommendations for children with FSGS

Setting Therapy Comment

On presentation Prednisone: initially daily and then
alternate days

Prednisone: initially daily and then
alternate days at lowest dose to prevent
relapse

Alkylating agent (cyclophosphamide or
chlorambucil), calcineurin inhibitor,
levamisole, mycophenolate mofetil

Calcineurin inhibitor

Frequently relapsing or
steroid dependent

Same, with steroid-related
adverse events

No RCT comparing one agent with
another; listed in alphabetical
order

Also ACE inhibitor and angiotensin
receptor blocker; sodium
restriction

Steroid resistant

If no remission, mycophenolate mofetil,
corticosteroids, or both

Recommendations from the Kidney Disease Improving Outcomes Global initiatives. Doses and durations of therapy are provided in
Lopez-Hellinet al. (46). In thenosology presented here, these recommendations would apply tonephrotic forms of primary FSGS, APOL1

FSGS, and certain rare forms of genetic FSGS. RCT, randomized, controlled trial; ACE, angiotensin-converting enzyme.

three trials against active comparators that were either
glucocorticoids or cyclosporin (reviewed in Senthil Nayagam
et al. [103]). None of the trials showed significant differences
between groups, and although sample sizes were small,
particularly for noninferiority trials, these data suggest efficacy.

Several Cochrane reviews are available covering treat-
ment of FSGS in adults (104) and children using not only
glucocorticoids (105) but also, other therapies, including
cyclophosphamide, azathioprine, levamisole, mizorbine,
and rituximab (106,107). Many other agents have been
tested in small trials or reported as case series, and they
have been the subject of recent reviews (13,108-111). These
agents include the following: adalimumab, an anti-TNF
mAb (112); pirfenidone, an antifibrotic agent that sup-
presses TGF-B signaling (113); fresolimumab, an anti-TGF-3
mADb (114); pulse steroids plus cyclophosphamide (115);

and saquinivir (116). Achtar gel is unusual in that it was
approved in the 1950s by the US Food and Drug Admin-
istration for nephrotic syndrome under criteria that were
less stringent than required today. Small case series suggest
limited efficacy of Acthar in some individuals with FSGS
(117,118) as has been reviewed (119); a randomized,
controlled trial is in progress. Galactose, proposed as ther-
apy for recurrent FSGS, has been shown to lack efficacy in
steroid-resistant primary FSGS in children (120). Sirolimus
may accelerate progression of FSGS and should be avoided
(93). Ongoing and recently completed phase 3 trials have
shown some efficacy with sparsentan, an irbesartan-like
molecule that also antagonizes endothelin receptor, and
abatacept, a CD80 antagonist (121).

There is considerable incentive for the pharmaceutical
and biotechnology industry to develop novel therapies for

Table 5. Treatment recommendations for adults with FSGS

Setting

Therapy

Comment

Nephrotic forms of primary FSGS,*
APOL1 FSGS, certain steroid-
sensitive genetic forms of FSGS

Steroid-resistant FSGS with
nephrotic syndrome”

Prednisone, initially daily or
alternate days®

Calcineurin inhibitor®
(cyclosporin and possibly,

Alternate for patients at high risk
for steroid complications:
calcineurin inhibitors®

Refractory FSGS with nephrotic
syndrome®

proteinuria

All forms of FSGS with subnephrotic

tacrolimus)
Mycophenolate mofetil plus
high-dose dexamethasone®

receptor blocker; dietary
sodium restriction

ACE inhibitor and angiotensin

Thiazide diuretic may potentiate
the antiproteinuric of RAAS
antagonism

Therapy doses are in ref. 46. Cyclosporin has been shown effective in randomized, controlled trials, whereas tacrolimus has not. In the
nosology presented here, these recommendations would apply, when nephrotic syndrome is present, to primary FSGS, APOL1 FSGS,
and certain rare forms of genetic FSGS that may be steroid sensitive. ACE, angiotensin-converting enzyme; RAAS, renin-angiotensin-
aldosterone system.

“Recommendations from the Kidney Disease Improving Outcomes Global initiatives for idiopathic FSGS with nephrotic syndrome are
extended here to other forms of FSGS as shown.
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FSGS, a rare disease as defined by the US Food and Drug
Administration that lacks therapies that are both safe and
effective. Gipson and colleagues (122) have proposed a new
paradigm for therapeutics development that involves a deep
understanding of disease mechanisms in patient subsets,
enriching study populations for subjects most likely to
respond on the basis of those biologic insights, and adaptive
trial designs to improve efficiency (122,123).

Medication-associated FSGS can generally be managed
by stopping the offending medication, and virus-associated
FSGS can be best addressed by initiating antiviral therapy
with additional adjunctive therapies as indicated. Cur-
rently, therapy for APOL1 FSGS is directed toward ad-
dressing the other FSGS classes (e.g., primary, adaptive,
virus associated, or medication associated) that may coexist
with APOL1 FSGS. Future therapies for cell injury path-
ways initiated by APOL1 variant expression are likely to be
developed.

The customary definition of response is similar to that of
other nephrotic diseases and assumes baseline proteinuria
in the nephrotic range (i.e., urine protein-to-creatinine ratio
[uPCR] =2 g/g). First void urine is preferred, because that
uPCR most closely correlates with the 24-hour uPCR.
Complete remission (CR) is defined as uPCR<0.2 g/g, and
partial remission (PR) is defined as having 50% reduction
from baseline proteinuria and uPCR<2 g/g.

RAAS antagonism therapy is central to all progressive
CKD, and it is the treatment that directly addresses the
hemodynamic alterations in adaptive FSGS. RAAS antago-
nist therapy also has a role in genetic FSGS (evidence limited
to case reports [124]) and APOL1 FSGS (no published data),
particularly when adaptive hemodynamic mechanisms are
likely at work (e.g., an individual who was born prematurely
is now obese and has a normal serum albumin, despite
substantial proteinuria), and may reduce proteinuria in
primary FSGS adjunctive to immunosuppressive therapies.
RAAS antagonist monotherapy was shown in a retrospective
study to be superior to immunotherapy in a pediatric FSGS
cohort in Philadelphia (with 55% black subjects) (125). As
with all progressive CKD, attention to BP control, smoking,
obesity, and serum bicarbonate and urate are indicated, and
consideration should be given to statin therapy.

The effects of RAAS antagonist therapy are potentiated
by dietary sodium restriction and low-dose thiazide diuretic
(126). Although hydrochlorothiazide is the most widely used
thiazide diuretic, an alternative is chlorthalidone, which has
certain features to recommend its more widespread use: it
has longer duration of action, it is more kaliuretic (particu-
larly helpful when low GFR compromises potassium excre-
tion), and it has been shown to improve cardiovascular
outcomes, which other thiazides have not been shown to do.

The issue of combining an angiotensin-converting en-
zyme inhibitor (ACEi) and an angiotensin receptor blocker
(ARB) is fraught with uncertainty. A meta-analysis of this
combination therapy in IgA nephropathy suggested pro-
teinuria reduction compared with single therapy, but
only one study involved subjects with nephrotic-range pro-
teinuria (127). The Ongoing Telmisartan Alone and in
Combination with Ramipril Global End Point Trial Study
showed that this combination is associated with adverse
cardiovascular outcomes in an older population with a high
prevalence of cardiovascular disease (128); similarly, the VA
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Diabetes in Nephropathy Study of diabetic nephropathy
(median age of 64 years old) showed a trend toward benefit
but was stopped early due to safety concerns (129). These
studies may have limited relevance to younger patients
with FSGS, particularly those with preserved GFR, who
may tolerate this combination better. RAAS antagonism and
particularly, the combination of ACEi and ARB will lower
GEFR by reducing efferent arteriolar vascular tone and thus,
reducing intraglomerular capillary pressure, the driving
force for glomerular filtration. Thus, a modest decrease in
GFR may be tolerated, providing evidence that RAAS
antagonism has been achieved. Nevertheless, there are no
trials of suitable size to justify this approach from an
efficacy or safety standpoint.

An alternate approach to RAAS antagonism is to com-
bine an ACEi or ARB with an aldosterone antagonist (130).
This approach may have less effect on reducing glomerular
capillary pressure, but aldosterone antagonists are potent
antifibrotic agents. Recent data have shown that aldoste-
rone is positioned upstream of multiple profibrotic path-
ways and that angiotensin 2 is only one of many stimuli to
aldosterone production (131). This combination confers a
risk for hyperkalemia, particularly with reduced GFR; this
may be controlled with dietary restriction and diuretics,
although close monitoring may be required.

Glucocorticoids have some efficacy in primary FSGS,
although they have not been tested against placebo in a
randomized, controlled trial. Response rates, defined as CR
plus PR, tend to be higher in children (often approximately
50%) compared with adults. For APOL1 FSGS, response
rates to glucocorticoids are probably similar to those seen
in primary FSGS, although the data are limited (83). The
mechanism by which glucocorticoids affect podocytes are
poorly understood; these agents are known to have direct
effects on cultured podocytes (132). Recently, it has been
suggested that these agents can expand the population of
myeloid-derived suppressor cells that downregulate T cell
function (133). Reliable and validated biomarkers of steroid
responsiveness would be valuable. There are few data on
which to base a determination of the appropriate dose and
duration of glucocorticoid therapy. Biomarkers for respon-
siveness to glucocorticoid therapy would be valuable to
reduce or avoid the need to expose patients to drugs to
which they will not respond. Preliminary studies that await
validation in larger cohorts include the ratio of podocin
mRNA to synaptopodin mRNA, particularly when the
diagnostic uncertainty with regard to MCD versus FSGS
exists (134). Immunohistochemical detection of reduced
expression of synaptopodin and receptor-type tyrosine-
protein phosphatase O (PTPRO or GLEPP1) may be useful
in identifying steroid-resistant patients (135). Conversely,
reduced eGFR at presentation does not predict nonrespon-
siveness to glucorticoids (136).

Calcineurin inhibitors, including cyclosporin and tacro-
limus, are mainstays of FSGS therapy for both steroid-
sensitive individuals who cannot tolerate continued steroid
therapy and steroid-resistant FSGS. Cyclosporin was
shown superior to placebo in the North American collab-
orative trial of steroid-resistant FSGS, with the primary
outcome of CR or PR occurring in 70% with cyclosporin
and 4% with placebo (102). Similarly, an open label study
of cyclosporin in steroid-resistant nephrotic syndrome in
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China showed a 75% response rate (137). The FSGS Clinical
Trial, which enrolled mostly children, showed that response
rates are similar for cyclosporin and mycophenolate mofetil
in blacks with and without high-risk APOL1 genotypes,
although group sizes were small (138). Although patients
may relapse when calcineurin inhibitors are discontinued,
many subjects remain in remission.

A number of novel therapies have been explored in small
trials. Some of these therapies have some promise, includ-
ing pirfenidone (113) and saquinivir (116). Other therapies
that have been shown to be ineffective or even harmful
include sirolimus (93), galactose (139), and adalimumab
(mAD directed against TNF) (139). Other immunosuppres-
sive agents that have been used include azathioprine and
mizoribine, although limited data for their success are
available.

Recently, there has been a surge of interest in developing
new therapies for FSGS and other primary glomerular
diseases, all of which are defined as rare by the US Food
and Drug Administration, and therefore, new therapies
have certain commercial benefits. This is an exciting time
for researchers of FSGS, and this is a time that patients
with FSGS and their families have reason for cautious
optimism. Ongoing or recently completed trials within the
United States include a phase 1 study of N-acetyl mannosamine
(metabolic precursor of sialic acid) and phase 2/3 studies
of sparsentan (a modified form of irbesartan that also antag-
onizes endothelin-1), abatacept (a fusion protein that targets
CD80), Acthar (pituitary extract), fresolimumab (mAb directed
against TGF-B), isotretinion (retinoic acid derivative), and
losmapimod (an mitogen-activated protein kinase inhibi-
tor). Trials in other countries are studying dapagliflozin
(Canada), lipoprotein removal (Japan), and mesenchymal
stem cell therapy (Iran). Given the diverse forms of FSGS and
the multiple molecular pathways involved in the pathogen-
esis of each form, it is critical that these trials and future trials
characterize subjects with sufficient depth to determine the
characteristics of responders and nonresponders.

FSGS comprises a complex set of syndromes, most with
multiple causes, and hence, FSGS represents a diagnostic
challenge that requires close and thoughtful collaboration
between patient, family, nephrologist, pathologist, and
geneticist to gather the necessary data. Information from
clinical history, laboratory testing, renal biopsy, and in
some patients, genetic testing can be used to identify which
syndrome is present, guide therapy, and provide prognos-
tic information. Many forms of FSGS tend to progress to
ESRD, but new therapies are being tested that may improve
the prognosis.
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